Multi-Robot Task Planning for Efficient Battery Disassembly in Electric Vehicles

Author:

Erdogan Cansu1,Contreras Cesar1ORCID,Stolkin Rustam1,Rastegarpanah Alireza1ORCID

Affiliation:

1. School of Metallurgy & Materials, University of Birmingham, Birmingham B15 2TT, UK

Abstract

With the surging interest in electric vehicles (EVs), there is a need for advancements in the development and dismantling of lithium-ion batteries (LIBs), which are highly important for the circular economy. This paper introduces an intelligent hybrid task planner designed for multi-robot disassembly and demonstrates its application to an EV lithium-ion battery pack. The objective is to enable multiple robots to operate collaboratively in a single workspace to execute battery disassembly tasks efficiently and without collisions. This approach can be generalized to almost any disassembly task. The planner uses logical and hierarchical strategies to identify object locations from data captured by cameras mounted on each robot’s end-effector, orchestrating coordinated pick-and-place operations. The efficacy of this task planner was assessed through simulations with three trajectory-planning algorithms: RRT, RRTConnect, and RRTStar. Performance evaluations focused on completion times for battery disassembly tasks. The results showed that completion times were similar across the planners, with 543.06 s for RRT, 541.89 s for RRTConnect, and 547.27 s for RRTStar, illustrating that the effectiveness of the task planner is independent of the specific joint-trajectory-planning algorithm used. This demonstrates the planner’s capability to effectively manage multi-robot disassembly operations.

Funder

“Research and Development of a Highly Automated and Safe Streamlined Process for Increase Lithium-ion Battery Repurposing and Recycling”

Ministry of National Education, Republic of Turkey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3