Robotic Systems of Systems Based on a Decentralized Service-Oriented Architecture

Author:

Siefke LennartORCID,Sommer VolkerORCID,Wudka BjörnORCID,Thomas CarstenORCID

Abstract

Multi-robot systems are often static and pre-configured during the design time of their software. Emerging cooperation between unknown robots is still rare and limited. Such cooperation might be basic like sharing sensor data or complex like conjoined motion planning and acting. Robots should be able to detect other robots and their abilities during runtime. When cooperation seems to be possible and beneficial, it should be initiated autonomously. A centralized cloud control shall be avoided. Using software patterns belonging to service-oriented architectures, the robots are able to discover other robots and their abilities during runtime. These abilities are implemented as services and described by their interfaces. Composition of services can be done easily and flexibly. The software patterns originally belonging to cloud computing could be successfully adopted to decentralized multi-robot systems. The developed concept allows autonomous systems to cooperate flexibly and to compose multi-robot systems during runtime.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient multi-robot path planning in real environments: a centralized coordination system;International Journal of Intelligent Robotics and Applications;2024-09-13

2. DynADL - Dynamic Architecture Description Language for System of Systems;2024 IEEE International Systems Conference (SysCon);2024-04-15

3. Distributed Service Discovery over Heterogeneous Robotic Systems-of-Systems;2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2023-06

4. Detecting and Processing Anomalies in a Factory of the Future;Applied Sciences;2022-08-16

5. Lightweight Software Architecture Evaluation for Industry: A Comprehensive Review;Sensors;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3