Optimization of Gas Sensors Based on Advanced Nanomaterials through Split-Plot Designs and GLMMs

Author:

Berni Rossella,Bertocci FrancescoORCID

Abstract

This paper deals with the planning and modeling of a split-plot experiment to improve novel gas sensing materials based on Perovskite, a nano-structured, semi-conductor material that is sensitive to changes in the concentration of hazardous gas in the ambient air. The study addresses both applied and theoretical issues. More precisely, it focuses on (i) the detection of harmful gases, e.g., NO 2 and CO, which have a great impact on industrial applications as well as a significantly harmful impact on human health; (ii) the planning and modeling of a split-plot design for the two target gases by applying a dual-response modeling approach in which two models, e.g., location and dispersion models, are estimated; and (iii) a robust process optimization conducted in the final modeling step for each target gas and for each gas sensing material, conditioned to the minimization of the working temperature. The dual-response modeling allows us to achieve satisfactory estimates for the process variables and, at the same time, good diagnostic valuations. Optimal solutions are obtained for each gas sensing material while also improving the results achieved from previous studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3