Author:
Lee Junsu,Moon Ju-Young,Chang Jin
Abstract
The superharmonic imaging of tissue has the potential for high spatial and contrast resolutions, compared to the fundamental and second harmonic imaging. For this technique, the spectral bandwidth of an ultrasound transducer is divided for transmission of ultrasound and reception of its superharmonics (i.e., higher than the second harmonic). Due to the spectral division for the transmission and reception, transmitted ultrasound energy is not sufficient to induce superharmonics in media without using contrast agents, and it is difficult that a transducer has a −6 dB fractional bandwidth of higher than 100%. For the superharmonic imaging of tissue, thus, multi-frequency array transducers are the best choice if available; transmit and receive elements are separate and have different center frequencies. However, the construction of a multi-frequency transducer for intravascular ultrasound (IVUS) imaging is particularly demanding because of its small size of less than 1 mm. Here, we report a recently developed dual-element focused IVUS transducer for the third harmonic imaging of tissue, which consists of a 35-MHz element for ultrasound transmission and a 105-MHz element for third harmonic reception. For high quality third harmonic imaging, both elements were fabricated to have the same focus at 2.5 mm. The results of tissue mimicking phantom tests demonstrated that the third harmonic images produced by the developed transducer had higher spatial resolution and deeper imaging depth than the fundamental images.
Funder
Ministry of Trade, Industry and Energy
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献