Sensitivity Tests of Pellets Made from Manganese Antimonate Nanoparticles in Carbon Monoxide and Propane Atmospheres

Author:

Guillén-Bonilla Héctor,Rodríguez-Betancourtt Verónica-M.,Guillen-Bonilla José,Gildo-Ortiz Lorenzo,Guillen-Bonilla Alex,Casallas-Moreno Y.,Blanco-Alonso Oscar,Reyes-Gómez Juan

Abstract

Nanoparticles of manganese antimonate (MnSb2O6) were prepared using the microwave-assisted colloidal method for its potential application as a gas sensor. For the synthesis of the oxide, manganese nitrate, antimony chloride, ethylenediamine and ethyl alcohol (as a solvent) were used. The precursor material was calcined at 800 °C in air and analyzed by X-ray diffraction. The oxide crystallized into a hexagonal structure with spatial group P321 and cell parameters a = b = 8.8054 Å and c = 4.7229 Å. The microstructure of the material was analyzed by scanning electron microscopy (SEM), finding the growth of microrods with a size of around ~10.27 μm and some other particles with an average size of ~1.3 μm. Photoacoustic spectroscopy (PAS) studies showed that the optical energy band (Eg) of the oxide was of ~1.79 eV. Transmission electron microscopy (TEM) analyses indicated that the size of the nanoparticles was of ~29.5 nm on average. The surface area of the powders was estimated at 14.6 m2/g by the Brunauer–Emmett–Teller (BET) method. Pellets prepared from the nanoparticles were tested in carbon monoxide (CO) and propane (C3H8) atmospheres at different concentrations (0–500 ppm) and operating temperatures (100, 200 and 300 °C). The pellets were very sensitive to changes in gas concentration and temperature: the response of the material rose as the concentration and temperature increased. The results showed that the MnSb2O6 nanoparticles can be a good candidate to be used as a novel gas sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3