Abstract
Peripartum dairy cows commonly experience negative energy balance (EB) and immunosuppression together with high incidences of infectious and metabolic disease. This study investigated mechanisms linking EB status with immune defense in early lactation. Data were collected from multiparous Holstein cows from six herds and leukocyte transcriptomes were analyzed using RNA sequencing. Global gene expression was related to circulating IGF-1 (as a biomarker for EB) by subdividing animals into three groups, defined as IGF-1 LOW (<35 ng/mL, n = 35), MODERATE (35–100 ng/mL, n = 92) or HIGH (>100 ng/mL, n = 43) at 14 ± 4 days in milk (DIM). Differentially expressed genes between groups were identified using CLC Genomics Workbench V21, followed by cluster and KEGG pathway analysis, focusing on the comparison between LOW and HIGH IGF-1 cows. LOW cows were older and had significantly lower dry matter intakes and EB values, whereas HIGH cows produced more milk. During the first 35 DIM, 63% of LOW cows had more than one health problem vs. 26% HIGH cows, including more with clinical mastitis and uterine infections. Gene expression analysis indicated that leukocytes in LOW cows switched energy metabolism from oxidative phosphorylation to aerobic glycolysis (PGM, LDH, and PDK4). Many antimicrobial peptides were up-regulated in LOW cows (e.g., PTX3, DMBT1, S100A8, and S100A9) together with genes associated with inflammation, platelet activation and the complement cascade. HIGH cows had greater expression of genes regulating T and B cell function and the cytoskeleton. Overall, results suggested an ongoing cycle of poor EB and higher infection rates in LOW IGF-1 cows which was reflected in altered leukocyte functionality and reduced milk production.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献