Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform

Author:

Xu Longfei,Zhang Jinchuan,Ding Jianghui,Liu Tong,Shi Gang,Li Xingqi,Dang Wei,Cheng Yishan,Guo Ruibo

Abstract

The purpose of this article was to quantitatively investigate the pore structure and fractal characteristics of different lithofacies in the upper Permian Dalong Formation marine shale. Shale samples in this study were collected from well GD1 in the Lower Yangtze region for mineral composition, X-ray diffraction (XRD), and nitrogen adsorption–desorption analysis, as well as broad-ion beam scanning electron microscopy (BIB-SEM) observation. Experimental results showed that the TOC (total organic carbon) content and vitrinite reflectance (Ro) of the investigated shale samples were in the ranges 1.18–6.45% and 1.15–1.29%, respectively, showing that the Dalong Formation shale was in the mature stage. XRD results showed that the Dalong Formation shale was dominated by quartz ranging from 38.4% to 54.3%, followed by clay minerals in the range 31.7–37.5%, along with carbonate minerals (calcite and dolomite), with an average value of 9.6%. Based on the mineral compositions of the studied samples, the Dalong Formation shale can be divided into two types of lithofacies, namely siliceous shale facies and clay–siliceous mixed shale facies. In siliceous shale facies, which were mainly composed of organic pores, the surface area (SA) and pore volume (PV) were in the range of 5.20–10.91 m2/g and 0.035–0.046 cm3/g, respectively. Meanwhile, the pore size distribution (PSD) and fractal dimensions were in the range 14.2–26.1 nm and 2.511–2.609, respectively. I/S (illite-smectite mixed clay) was positively correlated with SA, PV, and fractal dimensions, while illite had a negative relationship with SA, PV, and fractal dimensions. I/S had a strong catalytic effect on organic matter for hydrocarbon generation, which was beneficial to the development of organic micropores, so I/S was conducive to pore structure complexity and the increase in SA and PV, while illite easily filled organic pores, which was not beneficial to the improvement of pore space. In clay–siliceous mixed shale facies, which mainly develop inorganic pores such as intergranular pores, SA and PV were in the range of 6.71–11.38 m2/g and 0.030–0.041 cm3/g, respectively. Meanwhile, PSD and fractal dimensions were in the range of 14.3–18.9 nm and 2.563–2.619, respectively. Quartz and I/S showed weak positive correlations with SA, PV, and fractal dimensions. The various compact modes between quartz particles and the disorder of I/S were conducive to the complexity of pore structure and the improvement of SA and PV. The research findings can provide a reference for the optimization and evaluation of shale gas favorable area of the Lower Yangtze Platform.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3