H-Prop and H-Prop-News: Computational Propaganda Datasets in Hindi

Author:

Chaudhari DeptiiORCID,Pawar Ambika Vishal,Barrón-Cedeño Alberto

Abstract

In this digital era, people rely on the internet for their news consumption. As people are free to express their opinions on social media, much information shared on the internet is loaded with propaganda. Propagandist contents are intended to influence public opinion. In the mainstream media or prominent news agencies, the authors’ and news agencies’ own bias may impact in the news contents. Hence, it is required to detect such propaganda spread through news articles. Detection and classification of propagandist text require standard, high-quality, annotated datasets. A few datasets are available for propaganda classification. However, these datasets are mostly in English. Hindi is the most spoken language in India, and efforts are needed to detect its propagandist contents. This research work introduces two new datasets: H-Prop and H-Prop-News, which consist of news articles in Hindi annotated as propaganda or non-propaganda. The H-Prop dataset is generated by translating 28,630 news articles from the QProp dataset. The H-Prop-News dataset contains 5500 news articles collected from 32 prominent Hindi news websites. We experiment with the proposed datasets using four supervised machine learning models combined with different feature vectors and word embeddings. Our experiments achieve 87% accuracy using Logistic Regression with TF-IDF feature vectors. The datasets provide high-quality labeled news articles in Hindi and open new avenues for researchers to explore techniques for analyzing and classifying propaganda in Hindi text.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Reference34 articles.

1. Propaganda: The Formation of Men’s Attitudes;Ellul,1965

2. Deciphering published articles on cyberterrorism: a latent Dirichlet allocation algorithm application

3. Predicting Rogue Content and Arabic Spammers on Twitter

4. Women in ISIS Propaganda: A Natural Language Processing Analysis of Topics and Emotions in a Comparison with Mainstream Religious Group;Heidarysafa,2019

5. Extremist Propaganda Tweet Classification with Deep Learning in Realistic Scenarios

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3