A Data Resource for Prediction of Gas-Phase Thermodynamic Properties of Small Molecules

Author:

Bains WilliamORCID,Petkowski Janusz JurandORCID,Zhan Zhuchang,Seager Sara

Abstract

The thermodynamic properties of a substance are key to predicting its behavior in physical and chemical systems. Specifically, the enthalpy of formation and entropy of a substance can be used to predict whether reactions involving that substance will proceed spontaneously under conditions of constant temperature and pressure, and if they do, what the heat and work yield of those reactions would be. Prediction of enthalpy and entropy of substances is therefore of value for substances for which those parameters have not been experimentally measured. We developed a database of 2869 experimental values of enthalpy of formation and 1403 values for entropy for substances composed of stable small molecules, derived from the literature. We developed a model for predicting enthalpy of formation and entropy from semiempirical quantum mechanical calculations of energy and atom counts, and applied the model to a comprehensive database of 16,417 small molecules. The database of small-molecule thermodynamic properties will be useful for predicting the outcome of any process that might involve the generation or destruction of volatile products, such as atmospheric chemistry, volcanism, or waste pyrolysis. Additionally, the collected experimental thermodynamic values will be of value to others developing models to predict enthalpy and entropy.

Funder

Change Happens Foundation

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Uncertainties in the Thermodynamics of Phosphorus (III) Oxide (P4O6) Have Significant Implications for Phosphorus Species in Planetary Atmospheres;ACS Earth and Space Chemistry;2023-05-22

2. Neuro-fuzzy Approach based Prediction of Thermodynamic Properties of Steam;2022 IEEE International Conference on Current Development in Engineering and Technology (CCET);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3