Constructing High-Performance Carbon Nanofiber Anodes by the Hierarchical Porous Structure Regulation and Silicon/Nitrogen Co-Doping

Author:

Chen Yujia,Wang Jiaqi,Wang Xiaohu,Li Xuelei,Liu Jun,Liu JingshunORCID,Nan DingORCID,Dong Junhui

Abstract

Due to the rapid development of bendable electronic products, it is urgent to prepare flexible anode materials with excellent properties, which play a key role in flexible lithium-ion batteries. Although carbon fibers are excellent candidates for preparing flexible anode materials, the low discharge specific capacity prevents their further application. In this paper, a hierarchical porous and silicon (Si)/nitrogen (N) co-doped carbon nanofiber anode was successfully prepared, in which Si doping can improve specific capacity, N doping can improve conductivity, and a fabricated hierarchical porous structure can increase the reactive sites, improve the ion transport rate, and enable the electrolyte to penetrate the inner part of carbon nanofibers to improve the electrolyte/electrode contacting area during the charging–discharging processes. The hierarchical porous and Si/N co-doped carbon nanofiber anode does not require a binder, and is flexible and foldable. Moreover, it exhibits an ultrahigh initial reversible capacity of 1737.2 mAh g−1, stable cycle ability and excellent rate of performance. This work provides a new avenue to develop flexible carbon nanofiber anode materials for lithium-ion batteries with high performance.

Funder

Natural Science Foundation of Inner Mongolia

Inner Mongolia Major Science and Technology Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3