A Novel Hybrid Predictive Model for Ultra-Short-Term Wind Speed Prediction

Author:

Huang LongnvORCID,Wang QingyuanORCID,Huang Jiehui,Chen LiminORCID,Liang YinORCID,Liu Peter X.ORCID,Li Chunquan

Abstract

A novel hybrid model is proposed to improve the accuracy of ultra-short-term wind speed prediction by combining the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the sample entropy (SE), optimized recurrent broad learning system (ORBLS), and broadened temporal convolutional network (BTCN). First, ICEEMDAN is introduced to smooth the nonlinear part of the wind speed data by decomposing the raw wind speed data into a series of sequences. Second, SE is applied to quantitatively assess the complexity of each sequence. All sequences are divided into simple sequence set and complex sequence set based on the values of SE. Third, based on the typical broad learning system (BLS), we propose ORBLS with cyclically connected enhancement nodes, which can better capture the dynamic characteristics of the wind. The improved particle swarm optimization (PSO) is used to optimize the hyper-parameters of ORBLS. Fourth, we propose BTCN by adding a dilated causal convolution layer in parallel to each residual block, which can effectively alleviate the local information loss of the temporal convolutional network (TCN) in case of insufficient time series data. Note that ORBLS and BTCN can effectively predict the simple and complex sequences, respectively. To validate the performance of the proposed model, we conducted three predictive experiments on four data sets. The experimental results show that our model obtains the best predictive results on all evaluation metrics, which fully demonstrates the accuracy and robustness of the proposed model.

Funder

National Natural Science Foundation of China

Science and Technology Department of Jiangxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3