New Cell Balancing Technique Using SIMO Two-Switch Flyback Converter with Multi Cells

Author:

Kim Ui-Jin,Park Sung-Jun

Abstract

Recently, as the perception of eco-friendliness has changed, the demand for energy storage devices has been rapidly increasing due to the growth of the electric vehicle industry and smart grid facilities, which are emerging as an alternative to next-generation electricity supply and demand. Therefore, the importance of battery management technology is growing, and various voltage balancing techniques between battery cells are being studied in order to maintain high efficiency and continuous performance of batteries. This paper proposes a voltage balancing topology using a single input-multiple output (SIMO) two-switch flyback converter in a series battery configuration to resolve voltage imbalance between batteries. The characteristic of the proposed topology is that each cell on the secondary side of the two-switch flyback converter is connected to one high-frequency transformer to share the magnetic flux, and voltage balancing is performed according to the switch operation of the converter. At this time, the accumulated excess energy of the converter is refluxed to the power supply side through the freewheeling diode and converted into reactive power. The verification of the usefulness of the theoretical analysis in this paper was based on the analysis of the dynamic characteristics and steady state of the circuit through PSIM and experiments, and was conducted for one module composed of four cells.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. Battery cell balancing optimisation for battery management system;Yusof,2017

2. Electric Vehicles Batteries: Requirements and Challenges

3. Energy storage for the electricity grid: Benefits and market potential assessment guide;Eyer;Sandia Natl. Lab.,2010

4. Power conversion system control method for hybrid ESS;Na;Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014

5. Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications;Ogunniyi;Proceedings of the 2017 International Conference on the Domestic Use of Energy (DUE),2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3