Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite

Author:

Guo NingORCID,Meng Ruixiao,Gao JunguoORCID,He Mingpeng,Zhang Yue,He Lizhi,Hu HaitaoORCID

Abstract

The dielectric behavior of insulations is a key factor affecting the development of anti-corona materials for generators. Epoxy resin (EP), as the matrix, is blended with inorganic fillers of micron SiC and nano SiO2 to investigate the effect of micro and nano doping on the conductivity and breakdown mechanism of the composites. Using experimental and simulation analysis, it is found that the effect of nano-SiO2 doping concentration on the conductivity is related to the dispersion of SiC particles. The lower concentration of SiO2 could decrease the conductivity of the composites. The conductivity increases with raising the nano-SiO2 doping concentration to a critical value. Meanwhile, the breakdown field strength of the composites decreases with the rising content of SiC in constant SiO2 and increases with more SiO2 when mixed with invariable SiC. When an equivalent electric field is applied to the samples, the electric field at the interface of micron particles is much stronger than the average field of the dielectric, close to the critical electric field of the tunneling effect. The density of the homopolar space charge bound to the surface of the stator bar elevates as the concentration of filled nanoparticles increases, by which a more effective Coulomb potential shield can be built to inhibit the further injection of carriers from the electrode to the interior of the anti-corona layer, thus reducing the space charge accumulation in the anti-corona layer as well as increasing the breakdown field strength of the dielectric.

Funder

the National Natural Science Foundation of China

Postdoctoral Research Startup Fund Project of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. Recent Advances and Trends of Nanofilled/Nanostructured Epoxies

2. Design and Simulation Analysis of Anti-Corona Structure at the End of the Stator Bar of Large Hydrogenerators;Yuan;Proceedings of the 2021 IEEE International Conference on Electronic Technology, Communication and Information, ICETCI,2021

3. Space Charge Distribution and Nonlinear Conduction of Epoxy Nanocomposites

4. Dielectric and AC Breakdown Properties of SiO2/MMT/LDPE Micro–Nano Composites

5. Characteristics of Gel Time and Dielectric Strength of Epoxy Composite According to the Mixing Ratio of Micro-Fillers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3