Research on the Influence of Power-Supply Mode and Copper-Shielding Layer on the Loss of Cryogenic Permanent Magnet Motor for LNG Pump

Author:

Liu Shuqi,Ge Baojun,Tao Dajun,Wang Yue,Hou Peng,Wang Yong

Abstract

In order to study the method for reducing the losses in cryogenic permanent magnet motors for LNG pumps, the design of a submersible cryogenic permanent magnet brushless DC motor is presented in this paper. First, the materials used in the motor were tested at room temperature and at a low temperature, and the BH curve and BP curve of the silicon-steel sheet were obtained. Next, DC power supply and PWM power supply were used to analyze the influence of the power-supply mode on the motor loss. Finally, based on the calculation results of the motor loss, the ability of the copper-shielding layer to reduce the motor loss was explored. In the calculation process, the influence of the temperature was considered, and the motor losses at different temperatures were compared and analyzed, which provided a reference for reducing the loss of the cryogenic permanent magnet motor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference22 articles.

1. Development status and outlook of natural gas and LNG industry in China;Zhou;China Offshore Oil Gas,2022

2. Review of global gas market in 2021 and prospect for 2022;Xia;Int. Pet. Econ.,2022

3. The development trend and impact of global carbon-neutral LNG trade;Li;Int. Pet. Econ.,2022

4. Application of risk analysis in the liquefied natural gas (LNG) sector: An overview

5. The emerging hydrogen economy and its impact on LNG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of direct-drive permanent magnet synchronous motor for cryogenic valve;Cryogenics;2024-07

2. Design and Analysis of High-Speed Induction Machines for Submerged Cryogenic Pumps;2023 IEEE International Electric Machines & Drives Conference (IEMDC);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3