Abstract
Wind power utilization is attracting worldwide attention in the renewable energy field, and as wind power develops from land to sea, the size of the blades is becoming incredibly larger. The fatigue test, especially the biaxial synchronous fatigue test for the blades, is becoming an indispensable step to ensure the blade’s quality before mass production, which means the biaxial independent test presently used may have difficulty reproducing the real damage for large-sized blades that oscillate simultaneously in flap-wise and edgewise directions in service conditions. The main point of the fatigue test is to carry out accelerated and reinforced oscillations on blades in the experimental plan. The target moments of critical blade sections are reached or not during the test are treated as one significant evaluation criterion. For independent tests, it is not hard to realize moment matching using additional masses fixed on certain critical blade sections, which may be not easy to put into effect for biaxial synchronous tests, since the mechanical properties and target moments in the flap-wise and edgewise directions are widely varied. To realize the mechanical decoupling for loading force or additional mass inertia force in two directions is becoming one of the key issues for blade biaxial synchronous fatigue testing. For this problem, the present paper proposed one mechanical decoupling design concept after a related literature review. After that, the blade moment design and target matching approach are also proposed, using the Transfer Matrix Method (TMM) for moment quick calculation and Particle Swarm Optimization (PSO) for case optimization.
Funder
National Key R&D Program of China
Natural Science Foundation of Shanghai
Shanghai Municipal Science and Technology Major Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献