Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid

Author:

Ahuja Hemant,Singh Arika,Sharma Sachin,Sharma GulshanORCID,Bokoro Pitshou N.ORCID

Abstract

High penetration of wind power into the grid necessitates the coordinated action of wind energy conversion systems and the grid. A suitable generation control is required to fulfill the grid integration requirements, especially during faults. A system using a pair of voltage source converters with a squirrel cage induction generator coupled to a wind turbine is proposed to provide fault ride-through during grid faults. A threefold action is used for providing the effective fault ride-through via coordinated action of the machine side and the grid side converter. The entire wind energy conversion system is controlled such that the wind turbine remains connected even during the faults. To implement the threefold action: (i) A decoupled current controller is placed in the grid side converter, which separately controls the positive and negative sequence currents arising during faults. The grid side converter controller is capable of eliminating the double frequency oscillations at the dc-link voltage and, hence, real power, which arises during the unsymmetrical faults; (ii) Reactive power injection is additionally provided by the grid side converter for better grid support; and (iii) The vector control technique is used in machine side converter along with the droop control to adjust the generator speed and the torque resulting in actuation of the pitch control mechanism to limit power generation without shutdown of the turbine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview and case study of recent low voltage ride through methods for wind energy conversion system;Renewable and Sustainable Energy Reviews;2023-09

2. Stability Control of Two-Area of Power System Using Integrator, Proportional Integral and Proportional Integral Derivative Controllers;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

3. Load Frequency Control using PID Algorithm in Multiarea of Power System for Uncertain Load Conditions;2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2023-01-05

4. Components & Control Scheme used for Line of Sight Stabilization in Defence Applications;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

5. Load Frequency Control by using Different Controllers in Multi-Area Power System Networks;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3