Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement Learning

Author:

Zhang Shaobo1ORCID,Xia Qinxiang1ORCID,Chen Mingxing2,Cheng Sizhu3

Affiliation:

1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China

2. Zhuhai Gree Precision Mold Co., Ltd., Zhuhai 519070, China

3. Aircraft Maintenance Engineering School, Guangzhou Civil Aviation College, Guangzhou 510403, China

Abstract

This study investigated the trajectory-planning problem of a six-axis robotic arm based on deep reinforcement learning. Taking into account several characteristics of robot motion, a multi-objective optimization approach is proposed, which was based on the motivations of deep reinforcement learning and optimal planning. The optimal trajectory was considered with respect to multiple objectives, aiming to minimize factors such as accuracy, energy consumption, and smoothness. The multiple objectives were integrated into the reinforcement learning environment to achieve the desired trajectory. Based on forward and inverse kinematics, the joint angles and Cartesian coordinates were used as the input parameters, while the joint angle estimation served as the output. To enable the environment to rapidly find more-efficient solutions, the decaying episode mechanism was employed throughout the training process. The distribution of the trajectory points was improved in terms of uniformity and smoothness, which greatly contributed to the optimization of the robotic arm’s trajectory. The proposed method demonstrated its effectiveness in comparison with the RRT algorithm, as evidenced by the simulations and physical experiments.

Funder

Key-Area Research and Development Program of Guangdong Province

Guangzhou Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3