A Millimeter-Wave 3D Imaging Algorithm for MIMO Synthetic Aperture Radar

Author:

Lin Bo123,Li Chao123ORCID,Ji Yicai123,Liu Xiaojun12,Fang Guangyou123

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Multiple-input-multiple-output synthetic aperture radar (MIMO-SAR) is being studied and applied in more and more scenarios. However, there is still a certain distance away from real-time imaging using advanced algorithms. The traditional backpropagation algorithm (BPA) multi-accumulation integration is unsuitable for dealing with large-size scanning data, and the wavenumber domain algorithm requires the array to satisfy Nyquist sampling law in azimuth to avoid aliasing in imaging reconstruction. Based on these issues, a novel 3D imaging method is proposed for MIMO-SAR. An appropriate transformation and inverse Fourier transform (FT) is carried out for the frequency domain; thus, accumulation in the wavenumber domain is not required, which is easy to implement. The computational complexity of the algorithm is much lower than BPA and has better generalizability than the wavenumber domain algorithm. Coherence factor (CF) is also introduced to achieve sidelobe suppression. Proof-of-principle experiments were also carried out in the 92.5 GHz band based on the MIMO-SAR prototype system. Both simulation and experimental results of different distributed targets show good performance of imaging and do not lose the quality of image reconstruction.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Project of Equipment Pre-Research

Beijing Municipal Natural Science Foundation

Key Program of Scientific and Technological Innovation from Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3