Experimental Analysis of a Heat Pump Dryer with an External Desiccant Wheel Dryer

Author:

Yang Kai-Shing,Hamid Khalid,Wu Shih-Kuo,Sajjad Uzair,Wang Chi-ChuanORCID

Abstract

This study examines the performance of three heat pump dryers: the original reference design, a modified drying chamber, and an external desiccant wheel design. Unlike most existing studies that normally adopt organic products as the drying materials, in this study we used moist sodium polyacrylate (Orbeez) as the drying material for consistent characterization of the heat pump performance. R-134a was adopted as the refrigerant for the heat pump system. The experiments were performed subject to different weights of Orbeez (drying material) at a constant volumetric flow rate of 100 m3/h. During experimentation, different parameters like the coefficient of performance (COPHP), drying rate, heat transfer rate by the condenser, moisture extraction rate, and specific moisture extraction rate were calculated. The average COPHP, mass transfer rate, heat transfer rate, MER, and SMER of the system were calculated as 3.9, 0.30 kg/s, 0.56 kW, 0.495 kg/h, and 1.614 kg/kWh, respectively. The maximum COP for the refrigeration system was achieved at lower test loads with the desiccant wheel. The moisture extraction rate for a lower test loading was higher than that for a higher test load due to the higher penetration of drying air at the lower test load, although the maximum test load showed the maximum relative humidity at the dryer outlet. The desiccant wheel showed good performance in terms of moisture extraction rate and COPHP, but it showed poor performance in terms of the specific moisture extraction rate due to the high power consumption (around 2.6 kW) of the desiccant dehumidifier. The moisture extraction rate (MER) for all designs increased to a maximum value, followed by consistent decline. However, the maximum MER for the desiccant design exceeded those for the other designs.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3