Phase Transition in Frustrated Magnetic Thin Film—Physics at Phase Boundaries

Author:

Diep Hung

Abstract

In this review, we outline some principal theoretical knowledge of the properties of frustrated spin systems and magnetic thin films. The two points we would like to emphasize: (i) the physics in low dimensions where exact solutions can be obtained; (ii) the physics at phase boundaries where interesting phenomena can occur due to competing interactions of the two phases around the boundary. This competition causes a frustration. We will concentrate our attention on magnetic thin films and phenomena occurring near the boundary of two phases of different symmetries. Two-dimensional (2D) systems are in fact the limiting case of thin films with a monolayer. Naturally, we will treat this case at the beginning. We begin by defining the frustration and giving examples of frustrated 2D Ising systems that we can exactly solve by transforming them into vertex models. We will show that these simple systems already contain most of the striking features of frustrated systems such as the high degeneracy of the ground state (GS), many phases in the GS phase diagram in the space of interaction parameters, the reentrance occurring near the boundaries of these phases, the disorder lines in the paramagnetic phase, and the partial disorder coexisting with the order at equilibrium. Thin films are then presented with different aspects: surface elementary excitations (surface spin waves), surface phase transition, and criticality. Several examples are shown and discussed. New results on skyrmions in thin films and superlattices are also displayed. By the examples presented in this review we show that the frustration when combined with the surface effect in low dimensions gives rise to striking phenomena observed in particular near the phase boundaries.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference116 articles.

1. Frustrated Spin Systems,2013

2. Statistical Physics—Fundamentals and Application to Condensed Matter;Diep,2015

3. Quantum Field Theory and Critical Phenomena;Zinn-Justin,2002

4. Physics at Surfaces;Zangwill,1988

5. Ultrathin Magnetic Structures,1994

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3