Effect of Bed Particle Size on Thermal Performance of a Directly-Irradiated Fluidized Bed Gas Heater

Author:

Park Sae HanORCID,Yeo Chae Eun,Lee Min Ji,Kim Sung WonORCID

Abstract

There is a growing interest in a fluidized bed particle receiver that directly irradiates sunlight to particles in the fluidized bed as a solar thermal collector for heating. Thermal performance of directly-irradiated fluidized bed gas heater is strongly affected by the physical properties of the particles. The effect of SiC particle size on heat transfer characteristics in the solar fluidized bed gas heater (50 mm-ID × 100 mm high) has been determined. The outlet gas temperatures showed a maximum value with increasing gas velocity due to the particles motion by bubble behavior in the bed, and the maximum values were found at 3.6 times of Umf for fine SiC and less than 2.0 times of Umf for coarse SiC. Heat absorption from the receiver increased with increasing gas velocity, showing with maximum 18 W for the fine SiC and 23 W for the coarse SiC at 4.5 times of Umf. The thermal efficiency of the receiver increased with increasing gas velocity, but was affected by the content of finer particles. The maximum thermal efficiency of the receiver was 14% for fine SiC and 20% for coarse SiC within the experimental range, but showing higher for the fine SiC at the same gas velocity. A design consideration was proposed to improve the thermal efficiency of the system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3