Forecasting Air Temperature on Edge Devices with Embedded AI

Author:

Codeluppi GaiaORCID,Davoli LucaORCID,Ferrari GianluigiORCID

Abstract

With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range 0.289÷0.402∘C, a Mean Absolute Percentage Error (MAPE) in the range of 0.87÷1.04%, and a coefficient of determination (R2) not smaller than 0.997. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From lab to field: Nano-biosensors for real-time plant nutrient tracking;Plant Nano Biology;2024-08

2. Modeling the Drying Process of Onion Slices Using Artificial Neural Networks;Energies;2024-06-29

3. Accurate Short-Term Solar Irradiance Forecasting with TinyML on Edge Device;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

4. KalmanHD: Robust On-Device Time Series Forecasting with Hyperdimensional Computing;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

5. A Literature Review on Smart Greenhouse and AI: Paradigms, Opportunities and Open Issues;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3