A Clutter-Analysis-Based STAP for Moving FOD Detection on Runways

Author:

Yang XiaoqiORCID,Huo Kai,Zhang Xinyu,Jiang Weidong,Chen Yong

Abstract

Security risks and economic losses of civil aviation caused by Foreign Object Debris (FOD) have increased rapidly. Synthetic Aperture Radars (SARs) with high resolutions potentially have the capability to detect FODs on the runways, but the target echo is hard to be distinguished from strong clutter. This paper proposes a clutter-analysis-based Space-time Adaptive Processing (STAP) method in order to obtain effective clutter suppression and moving FOD indication, under inhomogeneous clutter background. Specifically, we first divide the radar coverage into equal scattering cells in the rectangular coordinates system rather than the polar ones. We then measure normalized RCSs within the X-band and employ the acquired results to modify the parameters of traditional models. Finally, we describe the clutter expressions as responses of the scattering cells in space and time domain to obtain the theoretical clutter covariance. Experimental results at 10 GHz show that FODs with a reflection higher than −30 dBsm can be effectively detected by a Linear Constraint Minimum Variance (LCMV) filter in azimuth when the noise is −60 dBm. It is also validated to indicate a −40 dBsm target in Doppler. Our approach can obtain effective clutter suppression 60dB deeper than the training-sample-coupled STAP under the same conditions.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Foreign Object Debris (FOD) Detection Research;Patterson;Int. Airpt. Rev.,2008

2. iFerret on Scratchhttps://www.sourcesecurity.com/news/stratech-iferret-assess-ground-surveillance-systems-co-7811-ga.19664.html/

3. Tarsier®: Automatic Runway FOD Detection Systemhttps://www.tarsierfod.com/

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3