Affiliation:
1. Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
2. Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
Abstract
Rhodoliths are non-geniculate, free-living coralline red algae that can accumulate on the seafloor and form structurally complex benthic habitats supporting diverse communities known as rhodolith beds. We combined in situ rhodolith collections and imagery to quantify variability, over 9 months and at two sites, in the structural complexity and biodiversity of a subarctic Lithothamnion glaciale rhodolith bed. We show that the unconsolidated rhodolith framework is spatially heterogeneous, yet provides a temporally stable habitat to an abundant and highly diverse macrofauna encompassing 108 taxa dominated by brittle stars, chitons, bivalves, gastropods, polychaetes, sea urchins, and sea stars. Specific habitat components, including large bivalve shells, affect rhodolith morphology and resident macrofauna, with increasingly large, non-nucleated rhodoliths hosting higher macrofaunal density, biomass, and diversity than increasingly large, shell-nucleated rhodoliths. The present study’s fine taxonomic resolution results strongly support the notion that rhodolith beds are biodiversity hotspots. Their spatial and temporal domains provide clear quantitative evidence that rhodolith beds provide a stable framework under the main influence of biological forcing until sporadic and unusually intense physical forcing reworks it. Our findings suggest that shallow (<20 m depth) rhodolith beds are vulnerable to ongoing and predicted increases in the frequency and severity of wave storms.
Funder
Natural Sciences and Engineering Research Council
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献