Chemically Modified Hyaluronic Acid for Prevention of Post-Surgical Adhesions: New Aspects of Gel Barriers Physical Profiles

Author:

Torres-de la Roche Luz AngelaORCID,Bérard Véronique,de Wilde Maya Sophie,Devassy RajeshORCID,Wallwiener Markus,De Wilde Rudy LeonORCID

Abstract

This study was conducted to provide information regarding the chemistry—including structure, synthesis, formulation, and mechanical properties—of two types of chemically modified anti-adhesion gels made of hyaluronic acid. Gel A (Hyalobarrier®) and gels B and C (HyaRegen® and MetaRegen®) that are used in postsurgical adhesion prevention. To date, little information is available on their physicochemical attributes. This information is necessary in order to understand the differences in their in vivo behavior. Methods: Comparative analyses were conducted under laboratory-controlled conditions, including measuring the shear viscosity, storage modulus G’, peel strength, and extrusion forces. Results: All polymers exhibited viscoelastic behavior. Polymer A showed a shear viscosity approximately three times larger than both polymers B and C (114 Pa.s−1 vs. 36–38 Pa.s−1) over the shear-rate range measured, indicating a possible better ability to resist flows and potentially remain in place at the site of application in vivo. The results of storage modulus (G’) measurements showed 100 Pa for polymer A and 16 Pa and 20 Pa for polymers B and C, respectively. This translated into a weaker elastic behavior for gels B and C, and a lower ability to resist sudden deformation. The peel test results showed a rupture strength of 72 mN (0.016 lbf) for polymer A, 39.6 mN (0.0089 lbf) for polymer B, and 38.3 mN (0.0086 lbf) for polymers C, indicating possible higher adhesive properties for polymer A. Tests measuring the extrudability of the hyaluronic acid gels in their commercial syringes showed an average extrusion force of 20 N (4.5 lbf) for polymer A, 28 N (6.33 lbf) for polymer B, and 17 N (3.79 lbf) for polymer C. Conclusions: Modified anti-adhesion gels made of hyaluronic acid differed in mechanical properties and concentration. Further clinical studies are needed to confirm whether these differences make one polymer easier to apply during surgery and more likely to stay in place longer after in vivo application, and to determine which is potentially superior in terms of preventing adhesions.

Funder

Nordic Pharma, Paris, France

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3