Interference Mitigation for Visible Light Communications in Underground Mines Using Angle Diversity Receivers

Author:

Palacios Játiva PabloORCID,Román Cañizares Milton,Azurdia-Meza Cesar A.ORCID,Zabala-Blanco DavidORCID,Dehghan Firoozabadi AliORCID,Seguel FabianORCID,Montejo-Sánchez Samuel,Soto Ismael

Abstract

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 − 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3