Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach

Author:

Lee Jaehyun,Joo Hyosung,Lee Junglyeon,Chee Youngjoon

Abstract

Without expert coaching, inexperienced exercisers performing core exercises, such as squats, are subject to an increased risk of spinal or knee injuries. Although it is theoretically possible to measure the kinematics of body segments and classify exercise forms with wearable sensors and algorithms, the current implementations are not sufficiently accurate. In this study, the squat posture classification performance of deep learning was compared to that of conventional machine learning. Additionally, the location for the optimal placement of sensors was determined. Accelerometer and gyroscope data were collected from 39 healthy participants using five inertial measurement units (IMUs) attached to the left thigh, right thigh, left calf, right calf, and lumbar region. Each participant performed six repetitions of an acceptable squat and five incorrect forms of squats that are typically observed in inexperienced exercisers. The accuracies of squat posture classification obtained using conventional machine learning and deep learning were compared. Each result was obtained using one IMU or a combination of two or five IMUs. When employing five IMUs, the accuracy of squat posture classification using conventional machine learning was 75.4%, whereas the accuracy using deep learning was 91.7%. When employing two IMUs, the highest accuracy (88.7%) was obtained using deep learning for a combination of IMUs on the right thigh and right calf. The single IMU yielded the best results on the right thigh, with an accuracy of 58.7% for conventional machine learning and 80.9% for deep learning. Overall, the results obtained using deep learning were superior to those obtained using conventional machine learning for both single and multiple IMUs. With regard to the convenience of use in self-fitness, the most feasible strategy was to utilize a single IMU on the right thigh.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Optimized Physical Activity: A Fusion of Graph Convolutional Networks and XGBoost for Exercise Analysis;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

2. The development of an automated assessment system for resistance training movement;Sports Biomechanics;2024-03-21

3. Enhancing squat movement classification performance with a gated long-short term memory with transformer network model;Sports Biomechanics;2024-02-19

4. Towards Globalised Models for Exercise Classification using Inertial Measurement Units;2023 IEEE 19th International Conference on Body Sensor Networks (BSN);2023-10-09

5. Using Learnable Physics for Real-Time Exercise Form Recommendations;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3