Author:
Lee Jaehyun,Joo Hyosung,Lee Junglyeon,Chee Youngjoon
Abstract
Without expert coaching, inexperienced exercisers performing core exercises, such as squats, are subject to an increased risk of spinal or knee injuries. Although it is theoretically possible to measure the kinematics of body segments and classify exercise forms with wearable sensors and algorithms, the current implementations are not sufficiently accurate. In this study, the squat posture classification performance of deep learning was compared to that of conventional machine learning. Additionally, the location for the optimal placement of sensors was determined. Accelerometer and gyroscope data were collected from 39 healthy participants using five inertial measurement units (IMUs) attached to the left thigh, right thigh, left calf, right calf, and lumbar region. Each participant performed six repetitions of an acceptable squat and five incorrect forms of squats that are typically observed in inexperienced exercisers. The accuracies of squat posture classification obtained using conventional machine learning and deep learning were compared. Each result was obtained using one IMU or a combination of two or five IMUs. When employing five IMUs, the accuracy of squat posture classification using conventional machine learning was 75.4%, whereas the accuracy using deep learning was 91.7%. When employing two IMUs, the highest accuracy (88.7%) was obtained using deep learning for a combination of IMUs on the right thigh and right calf. The single IMU yielded the best results on the right thigh, with an accuracy of 58.7% for conventional machine learning and 80.9% for deep learning. Overall, the results obtained using deep learning were superior to those obtained using conventional machine learning for both single and multiple IMUs. With regard to the convenience of use in self-fitness, the most feasible strategy was to utilize a single IMU on the right thigh.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献