Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting

Author:

Chang Haiyang12,Liang Zhijian1,Lang Kun1,Fan Jiahui1,Ji Lei2,Yang Kejian2,Lu Shaolin2,Ma Zetong2,Wang Lei1ORCID,Wang Cheng12

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China

2. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China

Abstract

Electrocatalytic water splitting is one of the most efficient ways of producing green hydrogen energy. The design of stable, active, and efficient electrocatalysts plays a crucial role in water splitting for achieving efficient energy conversion from electrical to hydrogen energy, aimed at solving the lingering energy crisis. In this work, CNT composites modified with CoP-V4P3 composites (CoVO-10-CNT-450P) were formed by carbonising a pencil-like precursor (Co3V2O8-H2O) and growing carbon nanotubes in situ, followed by in situ phosphorylation on the carbon nanotubes. In the HER electrocatalytic process, an overpotential of only 124 mV was exhibited at a current density of 10 mA cm−2. In addition, as an OER catalyst, a low overpotential of 280 mV was attained at a current density of 10 mA cm−2. Moreover, there was no noticeable change in the performance of the catalyst over a 90 h test in a continuous total water splitting experiment. The unique electronic structure and hollow carbon nanotube structure of CoVO-10-CNT-450P effectively increased the catalytic active sites, while also significantly improving the electrocatalytic activity. This work provides theoretical guidance for the design and synthetic route of high-performance non-precious metal electrocatalysts, and actively promotes the commercial application of electrochemical water splitting.

Funder

National Natural Science Foundation of China

Intergovernmental International Cooperation of National Key R&D Program of China

2022 Key R&D Plan of International Cooperation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3