Active Micro/Nanoparticles in Colloidal Microswarms

Author:

Wang Qianqian1ORCID,Jin Dongdong2

Affiliation:

1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211000, China

2. School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China

Abstract

Colloidal microswarms have attracted increasing attention in the last decade due to their unique capabilities in various complex tasks. Thousands or even millions of tiny active agents are gathered with distinctive features and emerging behaviors, demonstrating fascinating equilibrium and non-equilibrium collective states. In recent studies, with the development of materials design, remote control strategies, and the understanding of pair interactions between building blocks, microswarms have shown advantages in manipulation and targeted delivery tasks with high adaptability and on-demand pattern transformation. This review focuses on the recent progress in active micro/nanoparticles (MNPs) in colloidal microswarms under the input of an external field, including the response of MNPs to external fields, MNP–MNP interactions, and MNP–environment interactions. A fundamental understanding of how building blocks behave in a collective system provides the foundation for designing microswarm systems with autonomy and intelligence, aiming for practical application in diverse environments. It is envisioned that colloidal microswarms will significantly impact active delivery and manipulation applications on small scales.

Funder

National Natural Science Foundation

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference108 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3