Silicon-Based On-Chip Tunable High-Q-Factor and Low-Power Fano Resonators with Graphene Nanoheaters

Author:

Hong Qilin12ORCID,Jiang Jinbao12,Zhou Siyu12,Xia Gongyu12,Xu Ping3,Zhu Mengjian12,Xu Wei12,Zhang Jianfa12ORCID,Zhu Zhihong12

Affiliation:

1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China

2. Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China

3. Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Tunable and low-power microcavities are essential for large-scale photonic integrated circuits. Thermal tuning, a convenient and stable tuning method, has been widely adopted in optical neural networks and quantum information processing. Recently, graphene thermal tuning has been demonstrated to be a power-efficient technique, as it does not require thick spacers to prevent light absorption. In this paper, a silicon-based on-chip Fano resonator with graphene nanoheaters is proposed and fabricated. This novel Fano structure is achieved by introducing a scattering block, and it can be easily fabricated in large quantities. Experimental results demonstrate that the resonator has the characteristics of a high quality factor (∼31,000) and low state-switching power (∼1 mW). The temporal responses of the microcavity exhibit qualified modulation speed with 9.8 μs rise time and 16.6 μs fall time. The thermal imaging and Raman spectroscopy of graphene at different biases were also measured to intuitively show that the tuning is derived from the joule heating effect of graphene. This work provides an alternative for future large-scale tunable and low-power-consumption optical networks, and has potential applications in optical filters and switches.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3