Measurement of the Dzyaloshinskii–Moriya Interaction in Mn4N Films That Host Skyrmions

Author:

Zhou Wei1ORCID,Ma Chung Ting1ORCID,Poon S. Joseph12

Affiliation:

1. Department of Physics, University of Virginia, Charlottesville, VA 22904, USA

2. Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA

Abstract

Mn4N thin film is one of the potential magnetic mediums for spintronic devices due to its ferrimagnetism with low magnetization, large perpendicular magnetic anisotropy (PMA), thermal stability, and large domain wall velocity. Recent experiments confirmed the existence of tunable magnetic skyrmions in MgO/Mn4N/CuxPt1−x(x = 0, 0.5, 0.9, 0.95), and density functional theory (DFT) calculation provided a large theoretical value of the interfacial Dzyaloshinskii–Moriya interaction (iDMI) of Mn4N/Pt, which is consistent with the predicted chemical trend of the DMI in transition metal/Pt films. So far, the measured DMI has not been reported in Mn4N, which is needed in order to support the predicted large DMI value. This paper reports the average DMI of MgO/Mn4N(17 nm)/CuxPt1−x(3 nm) extracted from the anomalous Hall effect with various tilted angles, which is based on magnetic droplet theory with DMI effects. The DMI decreases from 0.267 mJ/m2 to 0.011 mJ/m2 with non-linear tendencies as Cu concentration in the CuxPt1−x capping layer increases from 0 to 1, demonstrating the control of the DMI through the CuxPt1−x capping layer. Furthermore, a solid solution model is developed based on an X-ray photoelectron spectroscopy (XPS) compositional depth profile to analyze the possible effects on the DMI from the mixing layers at the surface of Mn4N. After taking into account the mixing layers, the large DMI in Mn4N film with Pt capping is consistent with the predicted DMI.

Funder

DARPA Topological Excitations in Electronics (TEE) program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference44 articles.

1. Opportunities and challenges for spintronics in the microelectronics industry;Dieny;Nat. Electron.,2020

2. Antiferromagnetic spintronics;Jungwirth;Nat. Nanotechnol.,2016

3. Ferrimagnets for spintronic devices: From materials to applications;Zhang;Appl. Phys. Lett.,2023

4. Spintronics: Fundamentals and applications;Fabian;Rev. Mod. Phys.,2004

5. Spintronic devices: A promising alternative to CMOS devices;Barla;J. Comput. Electron.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3