Cu@Fe-Redox Capacitive-Based Metal–Organic Framework Film for a High-Performance Supercapacitor Electrode

Author:

Patil Supriya A.1ORCID,Katkar Pranav K.2ORCID,Kaseem Mosab1ORCID,Nazir Ghazanfar1,Lee Sang-Wha2ORCID,Patil Harshada3,Kim Honggyun3,Magotra Verjesh Kumar4ORCID,Thi Hoa Bui5,Im Hyunsik6ORCID,Shrestha Nabeen K.6ORCID

Affiliation:

1. Department of Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea

3. Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea

4. Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea

5. Institute of Materials Science, Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 112400, Vietnam

6. Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

Abstract

A metal–organic framework (MOF) is a highly porous material with abundant redox capacitive sites for intercalation/de-intercalation of charges and, hence, is considered promising for electrode materials in supercapacitors. In addition, dopants can introduce defects and alter the electronic structure of the MOF, which can affect its surface reactivity and electrochemical properties. Herein, we report a copper-doped iron-based MOF (Cu@Fe-MOF/NF) thin film obtained via a simple drop-cast route on a 3D-nickel foam (NF) substrate for the supercapacitor application. The as-deposited Cu@Fe-MOF/NF electrodes exhibit a unique micro-sized bipyramidal structure composited with nanoparticles, revealing a high specific capacitance of 420.54 F g−1 at 3 A g−1 which is twice compared to the nano-cuboidal Fe-MOF/NF (210 F g−1). Furthermore, the asymmetric solid-state (ASSSC) supercapacitor device, derived from the assembly of Cu@Fe-MOF/NFǁrGO/NF electrodes, demonstrates superior performance in terms of energy density (44.20 Wh.kg−1) and electrochemical charge–discharge cycling durability with 88% capacitance retention after 5000 cycles. This work, thus, demonstrates a high potentiality of the Cu@Fe-MOF/NF film electrodes in electrochemical energy-storing devices.

Funder

faculty research fund of Sejong University

National Research Foundation (NRF) of Korea

Dongguk University research fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3