Aquatic Ecosystem Risk Assessment Generated by Accidental Silver Nanoparticle Spills in Groundwater

Author:

Ramirez Rosember12ORCID,Martí Vicenç1ORCID,Darbra R. M.1ORCID

Affiliation:

1. Resource Recovery and Environmental Management (R2EM), Department of Chemical Engineering, Universitat Politècnica de Catalunya-Barcelona Tech, Diagonal 647, 08028 Barcelona, Catalonia, Spain

2. Departamento de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó 270001, Colombia

Abstract

This paper aims to create a new model for assessing the ecosystem risk in rivers and wetlands that are linked to accidental spills of silver nanoparticles (AgNPs) in soil/groundwater. Due to the uncertainty of the modeling inputs, a combination of two well-known risk assessment methodologies (Monte Carlo and fuzzy logic) were used. To test the new model, two hypothetical, accidental AgNP soil spill case studies were evaluated; both of which were located at the end of the Llobregat River basin within the metropolitan area of Barcelona (NE Spain). In both cases, the soil spill reached groundwater. In the first case, it was discharged into a river, and in the second case, it recharged a wetland. Concerning the results, in the first case study, a medium-risk assessment was achieved for most cases (83%), with just 10% of them falling below the future legal threshold concentration value. In the second case study, a high-risk assessment was obtained for most cases (84%), and none of the cases complied with the threshold value. A sensitivity analysis was conducted for the concentration and risk. The developed tool was proven capable of assessing risk in aquatic ecosystems when dealing with uncertain and variable data, which is an improvement compared to other risk assessment methodologies.

Funder

Spanish Ministry of Science, Innovation

Universities and Agencia Estatal de Investigación/European Regional Development Plan

Fundación Carolina

Universidad Tecnológica del Chocó “Diego Luis Cordoba”

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine;Biochemical and Biophysical Research Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3