Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis

Author:

Niu Xiaolin12,Chen Guanhui12,Chen Yi12,Luo Na12,Wang Mei12,Hu Xinyi12,Gao Yanpeng12ORCID,Ji Yuemeng12,An Taicheng12ORCID

Affiliation:

1. Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

2. Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The environmental transformation and health effects of endocrine disruptors (EDCs) need urgent attention, particularly the formation of transformation products with higher toxicity than parent EDCs. In this paper, an important transformation product dimer (short for ethyl 4-hydroxy-3-(2-((4-hydroxybenzoyl) oxy) ethyl) benzoate) with estrogenic activity was investigated and detected in the photolysis of preservative ethyl-paraben (EPB) dissolved in actual water. The environmental factors, such as the higher initial concentration of EPB, the stronger optical power and the lower pH could stimulate the formation of the dimer. Simultaneously, the interaction of multiple environmental factors was significant, especially the initial concentration and pH using the response surface methodology. Furthermore, the relationship between the environmental factors and the formation of the product dimer was further explained and the empirical model equation was built for predicting the amount of dimer in actual water. Quantum chemical and toxicological calculations showed the estrogenic effect mechanism of the product dimer and it was revealed further that the hydrogen bonds of the dimer and ERα proteins (ARG-394, Glu-353, His-524, GYY-521) were formed, with a lowest binding energy of −8.38 Kcal/mol during molecular docking. In addition, the health effect risk of the product dimer was higher than the parent compound in the blood, cardiovascular system, gastrointestinal system, kidney and liver. In short, the present study was of great significance for the transformation product in pollution control and health effects in the photolysis of EDCs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3