Significant Biotransformation of Arsenobetaine into Inorganic Arsenic in Mice

Author:

Zhang Jichao,Ye Zijun,Huang Liping,Zhao Qianyu,Dong Kaige,Zhang WeiORCID

Abstract

Arsenic (As) is extremely toxic to living organisms at high concentrations. Arsenobetaine (AsB), confirmed to be a non-toxic form, is the main contributor to As in the muscle tissue of marine fish. However, few studies have investigated the biotransformation and biodegradation of AsB in mammals. In the current study, C57BL/6J mice were fed four different diets, namely, Yangjiang and Zhanjiang fish diets spiked with marine fish muscle containing AsB, and arsenite (As(III)) and arsenate (As(V)) diets spiked with As(III) and As(V), respectively, to investigate the biotransformation and bioaccumulation of AsB in mouse tissues for 42 d. Different diets exhibited different As species distributions, which contributed to varying levels of As bioaccumulation in different tissues. The intestines accumulated the highest level of As, regardless of form, which played a major part in As absorption and distribution in mice. We observed a significant biotransformation of AsB to As(V) following its diet exposure, and the liver, lungs, and spleen of AsB-treated mice showed higher As accumulation levels than those of As(III)- or As(V)-treated mice. Inorganic As showed relatively high accumulation levels in the lungs and spleen after long-term exposure to AsB. Overall, these findings provided strong evidence that AsB undergoes biotransformation to As(V) in mammals, indicating the potential health risk associated with long-term AsB intake in mammals.

Funder

Outstanding Youth Project of Guangdong Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3