Affiliation:
1. Drosophila Behavior Laboratory, Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
2. Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract
Millions of people in developing countries are affected by arsenic (As) toxicity and its prevalence. Arsenic’s detrimental effects on humans have been amplified by an unacceptable level of exposure to food and drinking water, the ongoing rise in industrial usage, and several other occupational conditions. Due to increased cellular absorption and the ability to cross the blood–brain barrier (BBB), inorganic arsenic (iAs) is extremely hazardous to living organisms in its trivalent form. Arsenic toxicity damages an organism’s tissues and organs, resulting in skin cancer, circulatory system abnormalities, and central nervous system disorders. However, a competent model system is required to investigate the acute effects of arsenic on the brain, cognition ability, and to assess any behavioral impairment. Hence, Drosophila, with its short generation time, genomic similarities with humans, and its availability for robust behavioral paradigms, may be considered an ideal model for studying arsenic toxicity. The present study helps to understand the toxic effects of acute arsenic treatment on the behavior, cognition, and development of Drosophila in a time-dependent manner. We found that the exposure of fruit flies to arsenic significantly affected their locomotor abilities, pupae size, cognitive functions, and neurobehavioral impairment. Hence, providing a better understanding of how arsenic toxicity affects the brain leading to acute behavioral disorders and neurological alterations, this study will lead to a better understanding of the mechanisms.
Funder
University Grants Commission (New Delhi, India) and the Central University of South Bihar
Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献