Effects of Shellfish and Organic Fertilizer Amendments on Soil Nutrients and Tea Yield and Quality

Author:

Liu Wenbin12,Cui Shiyu3,Ma Jiawei12,Wu Dongtao4,Ye Zhengqian12,Liu Dan12

Affiliation:

1. Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China

2. The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China

3. College of Landscape and Architecture, Zhejiang A & F University, Hangzhou 311300, China

4. Lishui Agricultural and Rural Bureau, Lishui 323000, China

Abstract

Soil acidification in tea plantations leads to an excessive heavy metal content in tea, decreasing its yield and quality. How to apply shellfish and organic fertilizers to improve soil and ensure the safe production of tea is still not clear. A two-year field experiment was conducted in tea plantations in which the soil was characterized by a pH of 4.16 and concentrations of lead (Pb) (85.28 mg/kg) and cadmium (Cd) (0.43 mg/kg) exceeding the standard. We used shellfish amendments (750, 1500, 2250 kg/ha) and organic fertilizers (3750, 7500 kg/ha) to amend the soils. The experimental results showed that compared with the treatment without any amendment (CK), the soil pH increased by 0.46 on average; the soil available nitrogen, phosphorus, and potassium contents increased by 21.68%, 19.01%, and 17.51% respectively; and the soil available Pb, Cd, Cr, and As contents decreased by 24.64%, 24.36%, 20.83%, and 26.39%, respectively. In comparison to CK, the average yield of tea also increased by 90.94 kg/ha; tea polyphenols, free amino acids, caffeine, and water extract increased by 9.17%, 15.71%, 7.54%, and 5.27%, respectively; and the contents of Pb, Cd, As, and Cr in the tea decreased significantly (p < 0.05) by 29.44–61.38%, 21.43–61.38%, 10.43–25.22%, and 10.00–33.33%, respectively. The greatest effects on all parameters occurred with the largest amendment of both shellfish (2250 kg/ha) and organic fertilizer (7500 kg/ha) combined. This finding suggests that the optimized amendment of shellfish could be used as a technical measure to improve the health quality of both soil and tea in acidified tea plantations in the future.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Science and Technology Department of Zhejiang Province

Zhejiang High-level Talents Special Support Program

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3