Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments

Author:

Alharbi Reem Mohammed1,Sholkamy Essam Nageh2ORCID,Alsamhary Khawla Ibrahim3,Abdel-Raouf Neveen34,Ibraheem Ibraheem Borie M.4

Affiliation:

1. Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia

2. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Salah Salem Street, Beni-Suef 62511, Egypt

Abstract

This study examined the ability of the green microalgae Chlorella vulgaris to remove arsenic from aqueous solutions. A series of studies was conducted to determine the optimal conditions for biological arsenic elimination, including biomass amount, incubation time, initial arsenic level, and pH values. At 76 min, pH 6, 50 mgL−1 metal concentration, and 1 gL−1 bio-adsorbent dosage, the maximum removal of arsenic from an aqueous solution was 93%. The uptake of As (III) ions by C. vulgaris reached an equilibrium at 76 min of bio-adsorption. The maximum adsorptive rate of arsenic (III) by C. vulgaris was 55 mg/gm. The Langmuir, Freundlich, and Dubinin–Radushkevich equations were used to fit the experimental data. The best theoretical isotherm of Langmuir, Freundlich, or/and Dubinin–Radushkevich for arsenic bio-adsorption by Chlorella vulgaris was determined. To choose the best theoretical isotherm, the coefficient of correlation was used. The data on absorption appeared to be linearly consistent with the Langmuir (qmax = 45 mgg−1; R2 = 0.9894), Freundlich (kf = 1.44; R2 = 0.7227), and Dubinin–Radushkevich (qD–R = 8.7 mg/g; R2 = 0.951) isotherms. The Langmuir and Dubinin–Radushkevich isotherms were both good two-parameter isotherms. In general, Langmuir was demonstrated to be the most accurate model for As (III) bio-adsorption on the bio-adsorbent. Maximum bio-adsorption values and a good correlation coefficient were observed for the first-order kinetic model, indicating that it was the best fitting model and significant in describing the arsenic (III) adsorption process. SEM micrographs of treated and untreated algal cells revealed that ions adsorbed on the algal cell’s surface. A Fourier-transform infrared spectrophotometer (FTIR) was used to analyze the functional groups in algal cells, such as the carboxyl group, hydroxyl, amines, and amides, which aided in the bio-adsorption process. Thus, C. vulgaris has great potential and can be found in eco-friendly biomaterials capable of adsorbing arsenic contaminants from water sources.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3