Enrichment Characteristics of Hazardous Trace Elements in Feed Coal and Coal Ash in Huaibei Area under Leaching

Author:

Wang Degao1,Lu Jianwei2,Wu Jian2,Li Bo2,Nyasha Ndhlovu Kataza2

Affiliation:

1. College of Geology and Construction Engineering, Anhui Technical College of Industry and Economy, Hefei 230051, China

2. Key Laboratory of Intelligent Underground Exploration, College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

This research focused on the hazardous elements in the main coal seam of Huaibei coalfield, China. Through collecting 20 feed coal samples from different coal seams of nine coal mines in the region, and combining with XRF, XRD, ICP-MS, and sequential chemical extraction, the mineral composition and the contents of major elements and HEs for feed coal were analyzed. Compared with previous research results, the enrichment characteristics of HEs in feed coal were revealed. The leaching behaviors of Se, Hg, and Pb in feed coal and coal ash under different leaching conditions were analyzed in depth by using a leaching device independently developed. Results showed that, compared with Chinese coals and World coals, the content of other elements, except Se, Sb, Hg, and Pb, in feed coal of Huaibei coalfield were at the “Normal” level, and no “Low” level elements were found; as the acidity of leaching solution decreased, the relative leaching rate of Se (LSe) was gradually increasing, while the LHg and LPb were not obvious; the LSe in feed coal and coal ash had a great relationship with the modes of occurrence of Se. The difference in the Hg content in the ion exchange state in feed coal may be an important reason for the difference in Hg leaching behavior. However, the content of Pb in feed coal had little influence on its leaching behavior. The modes of occurrence of Pb determined that the LPb in feed coal and coal ash was not high. The LSe increased with the increase in acidity of leaching solution and leaching time. The leaching time was the main influencing factor of the LHg and LPb.

Funder

Natural Science Research Project of Colleges and Universities in Anhui Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3