Breeding, Biosorption Characteristics, and Mechanism of a Lead-Resistant Strain

Author:

Bao Lining123,Cui Yu12,Wu Haiwei12,Xu Jingwen12,Zhu Shuguang1234

Affiliation:

1. Anhui Institute of Strategic Study on Carbon Dioxide Emissions Peak and Carbon Neutrality in Urban-Rural Development, Anhui Jianzhu University, Hefei 230000, China

2. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230000, China

3. Key Laboratory of Water Pollution Control and Wastewater Reuse in Anhui Province, Anhui Jianzhu University, Hefei 230000, China

4. Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230000, China

Abstract

To effectively carry out the bioremediation of a Pb2+ polluted environment, a lead-tolerant strain named D1 was screened from the activated sludge of a factory in Hefei, and its lead removal in a solution with Pb2+ concentration of 200 mg/L could reach 91% under optimal culture conditions. Morphological observation and 16S rRNA gene sequencing were used to identify D1 accurately, and its cultural characteristics and lead removal mechanism were also preliminarily studied. The results showed that the D1 strain was preliminarily identified as the Sphingobacterium mizutaii strain. The experiments conducted via orthogonal test showed that the optimal conditions for the growth of strain D1 were pH 7, inoculum volume 6%, 35 °C, and rotational speed 150 r/min. According to the results of scanning electron microscopy and energy spectrum analysis before and after the D1 exposure to lead, it is believed that the lead removal mechanism of D1 is surface adsorption. The Fourier transform infrared spectroscopy (FTIR) results revealed that multiple functional groups on the surface of the bacterial cells are involved in the Pb adsorption process. In conclusion, the D1 strain has excellent application prospects in the bioremediation of lead-contaminated environments.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peritonitis by Sphingobacterium mizutaii;SN Comprehensive Clinical Medicine;2023-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3