Dielectric Barrier Discharge Plasma Coupled with Cobalt Oxyhydroxide for Methylene Blue Degradation

Author:

Yao Xiaomei1,Fang Yingbo1,Cui Xiaochen1,Cheng Xian12,Cheng Zixia1

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Henan Engineering Research Center of Power Transmission & Distribution Equipment and Electrical Insulation, Zhengzhou University, Zhengzhou 450001, China

Abstract

In this study, the coupled use of a double dielectric barrier discharge (DDBD) and CoOOH catalyst was investigated for the degradation of methylene blue (MB). The results indicated that the addition of CoOOH significantly promoted MB degradation performance compared to the DDBD system alone. In addition, both the removal rate and energy efficiency increased with an increase in CoOOH dosage and discharge voltage. After 30 min of discharge treatment in the coupled system (with CoOOH of 150 mg), the removal rate reached 97.10% when the discharge voltage was 12 kV, which was 1.92 times that in the single DDBD system. And when the discharge time was 10 min, the energy efficiency could reach 0.10 g (k·Wh)−1, which was 3.19 times better than the one in the single DDBD system. Furthermore, the addition of CoOOH could also significantly enhance the TOC and COD removal rates of MB. In the DDBD-coupled-with-CoOOH system, TOC and COD were 1.97 times and 1.99 times those of the single DDBD system after 20 min of discharge treatment with a discharge voltage of 12 kV and 100 mg of CoOOH. The main active substances detected in the coupled system indicated the conversion of the active species H2O2 and O3 into a more oxidizing ·OH was enhanced through the addition of a CoOOH catalyst, resulting in the more effective decomposition of MB and intermediate molecules.

Funder

National Natural Science Foundation of China

General Financial Grant from the China Postdoctoral Science Foundation

Key Laboratory of Engineering Dielectrics and its Application

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3