Effect of Arsenic Soil Contamination on Stress Response Metabolites, 5-Methylcytosine Level and CDC25 Expression in Spinach

Author:

Popov Marek1,Kubeš Jan1,Vachová Pavla1ORCID,Hnilička František1ORCID,Zemanová Veronika2ORCID,Česká Jana1,Praus Lukáš3ORCID,Lhotská Marie1,Kudrna Jiří1,Tunklová Barbora1ORCID,Štengl Karel1,Krucký Jiří1,Turnovec Tomáš1

Affiliation:

1. Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic

2. Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic

3. Laboratory of Environmental Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic

Abstract

Experimental spinach plants grown in soil with (5, 10 and 20 ppm) arsenic (As) contamination were sampled in 21 days after As(V) contamination. Levels of As in spinach samples (from 0.31 ± 0.06 µg g−1 to 302.69 ± 11.83 µg g−1) were higher in roots and lower in leaves, which indicates a low ability of spinach to translocate As into leaves. Species of arsenic, As(III) and As(V), were represented in favor of the As (III) specie in contaminated variants, suggesting enzymatic arsenate reduction. In relation to predominant As accumulation in roots, changes in malondialdehyde levels were observed mainly in roots, where they decreased significantly with growing As contamination (from 11.97 ± 0.54 µg g−1 in control to 2.35 ± 0.43 µg g−1 in 20 ppm As). Higher values in roots than in leaves were observed in the case of 5-methylcytosine (5-mC). Despite that, a change in 5-mC by As contamination was further deepened in leaves (from 0.20 to 14.10%). In roots of spinach, expression of the CDC25 gene increased by the highest As contamination compared to the control. In the case of total phenolic content, total flavonoid content, total phenolic acids content and total antioxidant capacity were higher levels in leaves in all values, unlike the roots.

Funder

EU—Project “NutRisk Centre”

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3