Chemical Source Profiles and Toxicity Assessment of Urban Fugitive Dust PM2.5 in Guanzhong Plain, China

Author:

Zhao Ziyi1,Tian Jie2,Zhang Wenyan3,Zhang Qian12,Wu Zhichun1,Xing Yan4,Li Fei4,Song Xinyu45,Li Zhihua1

Affiliation:

1. Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

3. Zhongsheng Environmental Technology Development Company Limited, Shaanxi Environmental Protection Industry Group Company Limited, Xi’an 710065, China

4. Key Laboratory of Shaanxi Environmental Medium Trace Pollutants Monitoring and Early Warning, Shaanxi Environmental Monitoring Center, Xi’an 710054, China

5. Environmental Monitoring Station of Baqiao Branch, Xi’an Ecology of Environment Bureau, Xi’an 710038, China

Abstract

Urban fugitive dust is a significant contributor to atmospheric PM2.5 and a potential risk to humans. In 2019, both road dust and construction dust were collected from four cities, including Xi’an, Xianyang, Baoji, and Tongchuan, in Guanzhong Plain, China. Elements, water-soluble ions, and carbonaceous fractions were determined to establish the chemical source profile. High enrichment degrees of Se, Sc, Cl, and Zn in both road dust and construction dust indicated that the industrial system and energy consumption influenced Guanzhong Plain strongly. According to the coefficient of divergence, the two datasets within Xianyang and Tongchuan were similar. Combined with the chemical profile, road dust was affected by more stationary emission sources than construction dust in Xi’an, while biomass burning and vehicle exhaust contributed more to road dust than construction dust in Baoji. Moreover, the health risk of heavy metal was assessed, and corresponding influencing factors were identified. Road dust in all cities showed a non-negligible non-carcinogenic risk for children. Ingestion and inhalation were the main exposure pathways to which As and Co contributed the most, respectively. The land-use regression model revealed that the first-class road in a 100 m radius impacted all high-risk level metals, and the commercial building material and enterprises weakly influenced Co and Pb, respectively.

Funder

the Key Research and Development Program of Shaanxi Province, China

the National Natural Science Foundation of China

SKLLQG, Chinese Academy of Sciences, China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3