Affiliation:
1. Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
3. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
4. National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract
For persistent organic pollutants, a concern of environmental supervision, predicted no-effect concentrations (PNECs) are often used in ecological risk assessment, which is commonly derived from the hazardous concentration of 5% (HC5) of the species sensitivity distribution (SSD). To address the problem of a lack of toxicity data, the objectives of this study are to propose and apply two improvement ideas for SSD application, taking polycyclic aromatic hydrocarbons (PAHs) as an example: whether the chronic PNEC can be derived from the acute SSD curve; whether the PNEC may be calculated by HC10 to avoid solely statistical extrapolation. In this study, the acute SSD curves for eight PAHs and the chronic SSD curves for three PAHs were constructed. The quantity relationship of HC5s between the acute and chronic SSD curves was explored, and the value of the assessment factor when using HC10 to calculate PNEC was derived. The results showed that, for PAHs, the chronic PNEC can be estimated by multiplying the acute PNEC by 0.1, and the value of the assessment factor corresponding to HC10 is 10. For acenaphthene, anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, the chronic PNECs based on the acute HC10s were 0.8120, 0.008925, 0.005202, 0.07602, 2.328, 12.75, 0.5731, and 0.05360 μg/L, respectively.
Funder
National Natural Science Foundation of China
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献