The Degradation Process of Typical Neonicotinoid Insecticides in Tidal Streams in Subtropical Cities: A Case Study of the Wuchong Stream, South China

Author:

Jia Qunpo12,Cai Yanpeng12,Yuan Xiao12,Li Bowen12,Li Bo12

Affiliation:

1. Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Neonicotinoid insecticides (NEOs) are commonly used to prevent unwanted insects in urban fields. Degradation processes have been one of the important environmental behaviors of NEOs in an aquatic environment. In this research, hydrolysis, biodegradation, and photolysis processes of four typical NEOs (i.e., thiacloprid (THA), clothianidin (CLO), acetamiprid (ACE), and imidacloprid (IMI)) were examined through the adoption of response surface methodology–central composite design (RSM-CCD) for an urban tidal stream in South China. The influences of multiple environmental parameters and concentration levels on the three degradation processes of these NEOs were then evaluated. The results indicated that the three degradation processes of the typical NEOs followed a pseudo-first-order reaction kinetics model. The primary degradation process of the NEOs were hydrolysis and photolysis processes in the urban stream. The hydrolysis degradation rate of THA was the highest (1.97 × 10−5 s−1), and that of CLO was the lowest (1.28 × 10−5 s−1). The temperature of water samples was the main environmental factor influencing the degradation processes of these NEOs in the urban tidal stream. Salinity and humic acids could inhibit the degradation processes of the NEOs. Under the influence of extreme climate events, the biodegradation processes of these typical NEOs could be suppressed, and other degradation processes could be further accelerated. In addition, extreme climate events could pose severe challenges to the migration and degradation process simulation of NEOs.

Funder

National Natural Science Foundation of China

key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3