Subchronic Arsenite Exposure Induced Atrophy and Erythropoietin Sensitivity Reduction in Skeletal Muscle Were Relevant to Declined Serum Melatonin Levels in Middle-Aged Rats

Author:

Chen Xiong1ORCID,Chen Wanying1,Wang Dapeng1,Ma Lu1,Tao Junyan1,Zhang Aihua1

Affiliation:

1. The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China

Abstract

Arsenic is a kind of widespread environmental toxicant with multiorgan-toxic effects, and arsenic exposure is associated with the occurrence and development of many chronic diseases. The influence of environmental arsenic exposure on skeletal muscle, which is a vital organ of energy and glucose metabolism, has received increasing attention. This study aimed to investigate the types of inorganic arsenic-induced skeletal muscle injury, and the potential regulatory effects of melatonin (MT) and erythropoietin (EPO) in young (3-month-old) and middle-aged (12-month-old) rats. Our results showed that 1 mg/L sodium arsenite exposure for 3 months could accelerate gastrocnemius muscle atrophy and promote the switch of type II fibers to type I fibers in middle-aged rats; however, it did not cause significant pathological changes of gastrocnemius muscle in young rats. In addition, arsenite could inhibit serum MT levels, and promote serum EPO levels but inhibit EPO receptor (EPOR) expression in gastrocnemius muscle in middle-aged rats, while serum MT levels and EPOR expression in gastrocnemius muscle showed an opposite effect in young rats. Importantly, exogenous MT antagonized the arsenite-induced skeletal muscle toxic effect and restored serum EPO and gastrocnemius muscle EPOR expression levels in middle-aged rats. There was a positive correlation among gastrocnemius muscle index, serum MT level, and gastrocnemius muscle EPOR protein level in arsenite-exposed rats. This study demonstrated that inorganic arsenic could accelerate skeletal muscle mass loss and type II fiber reduction in middle-aged rats, which may be related to decreased MT secretion and declined EPO sensitivity in skeletal muscle.

Funder

Natural Science Foundations of China

Guizhou Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3