The Treatment of Aquaculture Wastewater with Biological Aerated Filters: From the Treatment Process to the Microbial Mechanism

Author:

Ding Jiafeng12,Meng Yunjuan1,Lu Shihuan2,Peng Yiwen3,Yan Wen1,Li Wenbing1,Hu Jinchun4,Ye Ting4,Zhong Yuchi1,Zhang Hangjun12

Affiliation:

1. School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

2. School of Engineering, Hangzhou Normal University, Hangzhou 311121, China

3. Zhe Jiang Sunda Public Environmental Protection Co., Ltd., Hangzhou 311000, China

4. Quzhou Aquatic Technology Extension Station, Quzhou 324000, China

Abstract

Algal cell proliferation has posed significant problems for traditional water treatment facilities; these problems are attributed to surface hydrophilicity and electrostatic repulsion. Biological aerated filters (BAFs) have been extensively used in wastewater treatment to remove pollutants such as algal cells by utilizing the adsorption and separation capabilities of the filter media. In this study, a BAF was supplemented with biological filter medium (Marchantia polymorpha) to assess its effectiveness of pretreating aquaculture wastewater. In terms of process performance, steady and consistent treatment was achieved by the BAF with M. polymorpha (BAF2) under an algal cell density as high as 1.65 × 108 cell/L, with average removal rates for NH4+-N and algae cells of 74.4% and 81.9%, respectively. The photosynthetic activity parameters (rETRmax, α, Fv/Fm, and Ik) of the influent and effluent were quantitatively assessed, and M. polymorpha was found to remove algae by disrupting the photosynthetic system of the algal cells. Furthermore, the addition of the M. polymorpha filter medium enhanced the community structure of the functional microbes in the BAF system. The highest microbial community richness and diversity were observed in the BAF2. Meanwhile, M. polymorpha promoted an increase in the abundance of denitrifying bacteria, including Bdellovibrio and Pseudomonas. Overall, this work offers a unique perspective on the aquaculture wastewater pretreatment process and BAF design.

Funder

Key Research & Development project of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3