Affiliation:
1. Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
Abstract
Methylmercury (MeHg) is a toxin that causes severe neuronal oxidative damage. As vitamin C is an antioxidant well-known to protect neurons from oxidative damage, our goal was to elucidate its protective mechanism against MeHg-induced oxidative stress in human neuroblastomas (SHSY5Y). We treated cells with MeHg, L-ascorbic acid 2-phosphate (AA2P), or both, and used MTT, flow cytometry, and Western blot analyses to assess cell damage. We found that MeHg significantly decreased the survival rate of SH-SY5Y cells in a time- and dose-dependent manner, increased apoptosis, downregulated PAR and PARP1 expression, and upregulated AIF, Cyto C, and cleaved Caspase-3 expression. A time course study showed that MeHg increased reactive oxygen species (ROS) accumulation; enhanced apoptosis; increased DNA damage; upregulated expression ofγH2A.X, KU70, 67 and 57 kDa AIF, CytoC, and cleaved Caspase-3; and downregulated expression of 116 kDa PARP1, PAR, BRAC1, and Rad51. Supplementation with AA2P significantly increased cell viability and decreased intrinsic ROS accumulation. It also reduced ROS accumulation in cells treated with MeHg and decreased MeHg-induced apoptosis. Furthermore, AA2P conversely regulated gene expression compared to MeHg. Collectively, we demonstrate that AA2P attenuates MeHg-induced apoptosis by alleviating ROS-mediated DNA damage and is a potential treatment for MeHg neurotoxicity.
Funder
National Natural Science Foundation of China
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献