Elaborating the Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Rivers and Sediment around a Typical Aging Landfill in China

Author:

Quan Bingxu1,Tang Jiawei2,Niu Xiameng1,Su Peidong1,Zhang Zhimin1,Yang Yitao3

Affiliation:

1. School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

2. National Institute of Low Carbon and Clean Energy, Beijing 102211, China

3. School of Science, Tianjin University of Technology, Tianjin 300384, China

Abstract

Per- and polyfluoroalkyl substances (PFASs) are bioaccumulative and widely distributed persistent organic pollutants (POPs). Understanding the distribution of and ecological risks posed by PFASs is critical, particularly for PFAS emissions and accumulation from a common urban pollution source. The transformation characteristics and ecological risks of PFASs from a typical aging municipal landfill leachate were systematically monitored and assessed over five years in this study. The results showed that the total PFAS concentrations (ΣPFASs) in the rivers were between 26.4 and 464.3 ng/L, whereas in sediment, ΣPFASs ranged from 9.5 to 58.5 ng/g (w/w). The presence of perfluorooctanoic acid (PFOA) was the most prominent PFAS in both water (39.4–152.3 ng/L) and sediment (1.1–56.1 ng/g). In a five-year monitoring study, the concentration of PFASs in the aging landfill decreased by 23.3%, with higher mean concentrations observed during summer (307.6 ng/L) compared to winter (250.4 ng/L). As for the pollution distribution, the suspended particulate matter–water partition coefficient (log Kd) of carboxylic acid (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) ranged from 1.53 to 2.65, and from 1.77 to 2.82, respectively. PFSAs and long-chain PFCAs exhibited a greater propensity for sediment association compared to short-chain PFCAs. An ecological risk assessment of four typical PFASs, PFOA, perfluorooctane sulfonate (PFOS), perfluorobutanoic acid (PFBA), and perfluorobutane sulfonic acid (PFBS), utilizing the hazard quotient method revealed that the rivers surrounding the typical aging landfill exhibited a low contamination risk for PFOA, while no ecological risks were associated with the other three FPASs. This study contributes to an enhanced comprehension of the occurrence, distribution, and risk of PFASs in the rivers in rivers and sediment surrounding a typical aging landfill site in China, thereby providing crucial reference information for ensuring water quality safety.

Funder

Major Projects of Erdos Science and Technology

University-Industry Collaborative Education Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3