Synergetic Photocatalytic Peroxymonosulfate Oxidation of Benzotriazole by Copper Ferrite Spinel: Factors and Mechanism Analysis

Author:

Golshan Masoumeh1,Tian Na23,Mamba Gcina4ORCID,Kakavandi Babak56ORCID

Affiliation:

1. Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol 9861615881, Iran

2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

3. Unidad Docente Ingeniería Sanitaria, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, s/n, 28040 Madrid, Spain

4. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, Florida, South Africa

5. Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj 3149779453, Iran

6. Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj 3149779453, Iran

Abstract

The development of oxidation processes with the efficient generation of powerful radicals is the most interesting and thought-provoking dimension of peroxymonosulfate (PMS) activation. This study reports the successful preparation of a magnetic spinel of CuFe2O4 using a facile, non-toxic, and cost-efficient co-precipitation method. The prepared material exhibited a synergetic effect with photocatalytic PMS oxidation, which was effective in degrading the recalcitrant benzotriazole (BTA). Moreover, central composite design (CCD) analysis confirmed that the highest BTA degradation rate reached 81.4% after 70 min of irradiation time under the optimum operating conditions of CuFe2O4 = 0.4 g L−1, PMS = 2 mM, and BTA = 20 mg L−1. Furthermore, the active species capture experiments conducted in this study revealed the influence of various species, including •OH, SO4•−, O2•−, and h+ in the CuFe2O4/UV/PMS system. The results showed that SO4•− played a predominant role in BTA photodegradation. The combination of photocatalysis and PMS activation enhanced the consumption of metal ions in the redox cycle reactions, thus minimizing metal ion leaching. Additionally, this maintained the reusability of the catalyst with reasonable mineralization efficiency, which reached more than 40% total organic carbon removal after four batch experiments. The presence of common inorganic anions was found to have a retardant effect on BTA oxidation, with the order of retardation following: HCO3− > Cl− > NO3− > SO42−. Overall, this work demonstrated a simple and environmentally benign strategy to exploit the synergy between the photocatalytic activity of CuFe2O4 and PMS activation for the treatment of wastewater contaminated with widely used industrial chemicals such as BTA.

Funder

Zabol University of Medical Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3